Roles played by tissue factor and tissue factor pathway inhibitor in coagulation

ثبت نشده
چکیده

Patients with severe infections almost invariably exhibit evidence of activation of the coagulation system. The lungs are amongst the most frequently affected organs during severe infection and sepsis. The abundant presence of intravascular and extravascular fibrin appears to be a specific hallmark of acute lung injury after sepsis. Tissue factor (TF) is regarded to be the primary initiator of coagulation in severe infection. Effective blockade of the TF pathway, either by recombinant TF pathway inhibitor or by anti-TF antibodies in experimental sepsis, attenuates lung injury and partially prevents pulmonary dysfunction. In addition, inhibition of the activity of TF prevents local activation of coagulation in models of pneumonia. The TF pathway can influence inflammatory signaling by activation of protease activated receptor-1 and -2. This review presents the most recent data on the crosstalk between TFmediated coagulation and inflammation, with a specific emphasis on these processes in the lung. Introduction Disseminated intravascular coagulation (DIC) is an acquired syndrome that is characterized by intravascular activation of coagulation and loss of localization, and complications that compromise blood supply to organs. Bacterial infection is the most common cause of DIC, and both Gram-negative and Gram-positive organisms have been identified as causative pathogens, although coagulopathy may be more pronounced in infections caused by Gram-negative bacteria [1]. DIC is commonly seen in sepsis, and particularly in septic shock, in which the incidence is somewhere between 30% and 50% [2]. Understanding the pathogenetic mechanisms of the coagulation imbalance seen in DIC is particularly important, because of the role played by DIC in the development of multiple organ failure. Several concurrent mechanisms contribute to the pathogenesis of DIC. Bacterial lipopolysaccharide (LPS) and other bacterial products, as well as proinflammatory cytokines, all promote fibrin deposition through three main pathways [3,4]: tissue factor (TF)mediated thrombin generation; dysfunctional physiological anticoagulant mechanisms; and impaired fibrin removal due to depression of the fibrinolytic system by plasminogen activator inhibitor-1. All three of these mechanisms contribute to fibrin deposition in DIC. Severely reduced anticoagulant capacity and inhibited fibrinolysis, in conjunction with a massive activation of coagulation, lead to excessive fibrin formation and consumption of clotting factors and inhibitors. In recent years it has become clear that tightly regulated interactions exist between coagulation and inflammation during sepsis. In this review we focus on the role played by TF in the activation of coagulation and inflammation that occurs during severe infection, with a particular emphasis on these processes in the lungs. Roles played by tissue factor and tissue factor pathway inhibitor in coagulation Coagulation activation in sepsis is primarily driven by the TF pathway. TF, a 47 kDa transmembrane glycoprotein, is a potent stimulator of the extrinsic coagulation cascade and an essential mediator of coagulation [5,6]. It is not exposed to circulating blood in a resting state, but it becomes exposed on the surface of mononuclear cells and endothelial cells when they are stimulated by bacteria or by bacterial products such as LPS and proinflammatory cytokines. Alternatively, TF located at extravascular sites, such as on adventitial fibroblasts and vascular smooth muscle cells, can become exposed to blood at sites of vascular injury or disruption of the endothelium. Review Tissue factor as an initiator of coagulation and inflammation in the lung

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homology modeling and structural validation of tissue factor pathway inhibitor

Blood coagulation is a cascade of complex enzymatic reactions which involves specific proteins and cellular components to interact and prevent blood loss. The coagulation process begins by either "Tissue Dependent Pathway" (also known as extrinsic pathway) or by "contact activation pathway" (also known as intrinsic pathway). TFPI is an endogenous multivalent Kunitz type protease inhibitor which...

متن کامل

Protective roles for fibrin, tissue factor, plasminogen activator inhibitor-1, and thrombin activatable fibrinolysis inhibitor, but not factor XI, during defense against the gram-negative bacterium Yersinia enterocolitica.

Septic infections dysregulate hemostatic pathways, prompting coagulopathy. Nevertheless, anticoagulant therapies typically fail to protect humans from septic pathology. The data reported in this work may help to explain this discrepancy by demonstrating critical protective roles for coagulation leading to fibrin deposition during host defense against the Gram-negative bacterium Yersinia enteroc...

متن کامل

Evaluation of the Relationship Between Factor IX Inhibitor in Hemophilia B Patients and Different Types of Therapy in the North-eastern Part of Iran

Background: Hemophilia B is a bleeding disorder with a recessive X-linked inheritance pattern, in which the infected individuals have low levels of factor IX in their plasma. Affected individuals may have bleeding episodes after trauma or spontaneously considering the plasma level of factor IX. In order to prevent these episodes and to control bleeding, they should use coagulation factor concen...

متن کامل

FACTOR V AND VIII INHIBITOR IN PATIENTS WITH COMBINED FACTOR V AND VIII DEFICIENCY

Patients with coagulation factor(s) deficiency who use coagulation therapy are susceptible to forming inhibitors against coagulation factor(s). In this survey we detected factor V and VIII inhibitor in ten patients with combined deficiency of factors V and VIII from north east of Iran (Khorassan province). It was revealed in our survey that eight patients had both factor V and factor VIII i...

متن کامل

Factors IXa and Xa play distinct roles in tissue factor-dependent initiation of coagulation.

Tissue factor is the major initiator of coagulation. Both factor IX and factor X are activated by the complex of factor VIIa and tissue factor (VIIa/TF). The goal of this study was to determine the specific roles of factors IXa and Xa in initiating coagulation. We used a model system of in vitro coagulation initiated by VIIa/TF and that included unactivated platelets and plasma concentrations o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015